An Identification System Using Eye Detection Based On Wavelets And Neural Networks
نویسندگان
چکیده
The randomness and uniqueness of human eye patterns is a major breakthrough in the search for quicker, easier and highly reliable forms of automatic human identification. It is being used extensively in security solutions. This includes access control to physical facilities, security systems and information databases, Suspect tracking, surveillance and intrusion detection and by various Intelligence agencies through out the world. We use the advantage of human eye uniqueness to identify people and approve its validity as a biometric. . Eye detection involves first extracting the eye from a digital face image, and then encoding the unique patterns of the eye in such a way that they can be compared with pre-registered eye patterns. The eye detection system consists of an automatic segmentation system that is based on the wavelet transform, and then the Wavelet analysis is used as a pre-processor for a back propagation neural network with conjugate gradient learning. The inputs to the neural network are the wavelet maxima neighborhood coefficients of face images at a particular scale. The output of the neural network is the classification of the input into an eye or non-eye region. An accuracy of 90% is observed for identifying test images under different conditions included in training stage. KeywordsIdentification, eye detection, face detection, wavelets, neural networks
منابع مشابه
Driver Drowsiness Detection by Identification of Yawning and Eye Closure
Today most accidents are caused by drivers’ fatigue, drowsiness and losing attention on the road ahead. In this paper, a system is introduced, using RGB-D cameras to automatically identify drowsiness and give warning. In this system two important modules have been utilized simultaneously to identify the state of driver’s mouth and eyes for detecting drowsiness. At first, using the depth informa...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملUAV attitude Sensor Fault Detection Based On Fuzzy Logic and by Neural Network Model Identification
Fault detection has always been important in aviation systems to prevent many accidents. This process is possible in different ways. In this paper, we first identify the longitudinal axis plane model using neural network approach. Then based on the obtained model and using fuzzy logic, the aircraft status sensor fault detection unit was designed. The simulation results show that the fault detec...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1401.5108 شماره
صفحات -
تاریخ انتشار 2012